<u>LESSON 1-1</u> <u>SLOPES, LINES, CALCULATOR REVIEW</u>

The slope of a line is symbolized by the letter "m".

Slope =
$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}$$

Examples: Find the slopes of the lines containing each pair of points.
1. $2. (-2,0) and (4,2)$ 3. $(3,2) and (2,2)$ 4. $(3,2) and (3,5)$
 $m_1 = \frac{5}{2}$

<u>Parallel lines</u> have equal slopes ($m_1 = m_2$). <u>Perpendicular lines</u> have slopes which are

opposite reciprocals $\left(m_1 = -\frac{1}{m_2}\right)$.

Equations for lines

point-slope form: $y - y_1 = m(x - x_1)$ slope-intercept form:y = mx + b (where b is the y-intercept)general form :Ax + By + C = 0 (where A, B, and C are integers)

Examples: Find an equation of each line described.

5. a line through (2,3) with slope m = -3

6. a vertical line through (-1,2)

- 7. a line through (-1,2) parallel to the graph of 2x - 5y = 5 (in slopeintercept form)
- 8. a line through (-1,2) perpendicular to the graph of 2x - 5y = 5 (in general form)

Examples: Draw a graph of each line.

Calculator Examples:

11. Find a window to show a complete graph of $y = f(x) = -0.2x^3 - 2.2x^2 + 1.6x + 1$. Indicate the scale on the graph or give your window setting.

- 12. Find the zeros of $y = f(x) = -0.2x^3 2.2x^2 + 1.6x + 1$.
- 13. Find the points of intersection of $y = -x^3 + 12x^2 + 9x 3$ and 3x y + 5 = 0. Write the equation you are solving.
- 14. Use a calculator to solve $|x^2 5| \ge 4$. Write your answer in both inequality notation and interval notation.

ASSIGNMENT 1-1

1.

Find the slopes of these lines.

2. through (2,-6) and (5,-12)

4. through (-6,5) and (4,3)

Find an equation for each line.

3. through (3,6) and (-2,6)

- 5. through (1,2) with m = -2
- 6. through (2,0) and (3,1), in slope-intercept form
- 7. through (1,7) with undefined slope
- 8. through (1,7) with m = 0
- 9. vertical with *x*-intercept at 4
- 10. through (-1,-3) parallel to the graph of y = 3x 5, in general form
- 11. through (2,3) perpendicular to the graph of 2x 3y = 7
- 12. through (2,-3) perpendicular to the graph of x = 5

Graph without using a calculator.

- 13. y = -3x + 2
- 14. x = -2
- 15. 2x + 5y + 10 = 0
- 16. Show work to determine if (3,5), (7,0), and (-1,11) are collinear (lie on the same line).

Use a calculator for problems 17-27. Answers should be accurate to three or more decimal places (rounded or truncated).

- 17. Find an appropriate window to show a complete graph of $y = x^3 + 4x^2 5x$. Your window should show all zeros and all local maximum and minimum points (turnaround points). Draw a window rectangle on your own paper and accurately draw the graph. Indicate the scale on the graph or give the window setting.
- 18. Find the zeros of $y = f(x) = x^3 + 4x^2 5x$. Write the equation you are solving on your paper.

- 20. Find f(-2.1576) for this same function.
- 21. Find the x- and y-coordinates of the local maximum and minimum points of f(x).
- 22. Find the intersection points of the f(x) function and $g(x) = -3x^2 5x + 15$. Write the equation you are solving.
- 23. Solve $x^3 + 4x^2 5x = -3x^2 5x$.
- 24. Solve $x^3 + 4x^2 5x \le 0$. Write your answer in <u>interval notation</u>. No work is required.
- 25. Find the points of intersection of the graphs of $x^2 + y = 4$ and 2x y = 1. Write the equation you are solving.
- 26. Find the <u>x-coordinate(s)</u> of the point(s) of intersection of the graphs of x + y = 7 and 2x 3y = -1. Write the equation you are solving.
- 27. Solve $\log(2x^2 5) = 0$.

LESSON 1-2 FUNCTIONS, INVERSES, GRAPHING ADJUSTMENTS

Relation: any set of ordered pairs (any set of points on a graph) **Function**: a special type of relation. y is a function of x if for each x-value there is only one *y*-value. The graph of a function passes the vertical line test. This is written y = f(x). the set of all x-values the set of all y-values assuming y is a function of x Domain:

Range:

Determine whether each is a function of x. Examples:

Given: f(x) = 3x - 1 and $g(x) = x^2$. Find the following. Given: f(x) = 5x - 1 and $g(x) = x^2$. Find the following. 5. f(10) = 6. $g(x + \Delta x) = 7$. g(f(x)) = 8. $(f \circ g)(x) =$

One-to-one Function: a function in which not only is there only one y for each x, but there is also only one x for each y. The graph passes the horizontal line test as well as the vertical line test.

Inverse Function: found by switching x and y and solving for the new y. $f^{-1}(x)$ is the symbol for the inverse of f(x). Only one-to-one functions have inverse functions. Since x and y are switched to produce inverse functions, the domain of f is the range of f^{-1} and vice versa. If (a,b) is in the f function, then (b,a) is in the f^{-1} function.

Examples:

- 12. Which of the relations in Examples 1-4 is a function with an inverse function?
- 13. Find the inverse of $f(x) = 2x^3 1$.

Piecewise Function: a function defined differently on different pieces of its domain.

Examples:

14. Graph this piecewise function and give the domain and range.

<u>Zeros:</u> x-values for which y equals zero. Conventionally, zeros are written as single values (e.g. x = 2 or x = 5) while x-intercepts are written as ordered pairs (e.g. (2,0) or (5,0)).

Find the zeros without using a calculator.

15. $f(x) = x^2 - 3x - 4$ 16. $y = \frac{x^2 - 4}{x^2 + 4}$

<u>**Parent Graphs**</u> These graphs occur so frequently in this course that it would be worth your time to learn (memorize) them.

Graphing Adjustments to y = f(x)

1. y = -f(x)	reflect across the x-axis
2. y = f(-x)	reflect across the <i>y</i> -axis
3. y = f(x) + d	shift up if $d > 0$, shift down if $d < 0$
4. y = f(x+c)	shift left if $c > 0$, shift right if $c < 0$
5. $y = a \cdot f(x)$	vertical stretch if $a > 1$, vertical squeeze if $a < 1$
	(assumes a is positive, if a is negative a reflection is needed)
$6. y = f(b \cdot x)$	horizontal squeeze if $b > 1$, horizontal stretch if $b < 1$
	(assumes b is positive, if b is negative a reflection is needed)
$7. y = \left f(x) \right $	reflect all points below the x-axis across the x-axis. Leave points
	above the <i>x</i> -axis alone.
$8. y = f\left(x \right)$	eliminate completely all points left of the y-axis. Leave points
	right of the <i>y</i> -axis alone. Replace the left half of the graph with a reflection of the right half. Your graph should then show <i>y</i> -axis symmetry.

ASSIGNMENT 1-2

- 1. If f(x) = 3x 2, find the following. a. f(0) b. f(-3) c. f(b) d. f(x-1)
- 2. If $g(x) = \frac{|x|}{x}$, find the following. a. g(2) b. g(-2) c. $g(x^2)$

3. If
$$f(x) = x^2 - x$$
, find $\frac{f(x + \Delta x) - f(x)}{\Delta x}$.

Without using a calculator, find the domain and range of the given function and draw its graph. When possible make use of the <u>parent graphs</u> in this lesson. 4. $f(x) = \sqrt{x+1}$ 5. $g(x) = x^2 + 2$ 6. h(x) = 4-x

Without using a calculator determine whether y is a function of x.

- 7. 2x + 3y = 4 8. $x^2 + y^2 = 4$
- 9. Use the parent graph of $y = \sqrt{x}$ to graph the following. a. $y = \sqrt{x+2}$ b. $y = -\sqrt{x}$ c. $y = \sqrt{x-2}$ d. $y = 2\sqrt{x}$
- 10. Use the parent graph of $y = x^2$ to determine an equation for each graph.

- 11. If $f(x) = \sqrt{x}$ and $g(x) = x^2 1$, find the following. a. f(g(1)) b. g(f(1)) c. $(g \circ f)(x)$
- 12. If f(x) = x+1 and $g(x) = \frac{1}{x}$, find the following. a. $(f \circ g)(x)$ b. the domain of $(f \circ g)$ c. $(g \circ f)(x)$ d. the domain of $(g \circ f)$
- 13. Are the two composite functions $(f \circ g)$ and $(g \circ f)$ from problem 12 equal?
- 14. If $f(x) = 2x^2$, g(x) = x+5, h(x) = 2x-7, and k(x) = 3, find the following. a. k(2) b. f(k(x)) c. $(f \circ f)(x)$ d. k(g(x)) e. $(g \circ h)(3)$

Find the inverse function for each of the following showing organized work.

- 15. y = 2x 1 16. $f(x) = \sqrt[3]{x} 1$ 17. g(x) = x 18. $h(x) = \sqrt{x}$
- 19. Draw a graph of h(x) and $h^{-1}(x)$ from problem 18. Did your answer on problem 18 include the domain restriction needed for $h^{-1}(x)$?
- 20. If $f(x) = \sqrt{x-2}$, $g(x) = x^2$, and $h(x) = \frac{1}{x^2}$, find the following. a. g(f(x)) b. the domain of $(g \circ f)$ c. h(f(x)) d. the domain of $(h \circ f)$
- 21. Without using a calculator graph this piecewise function.

$$f(x) = \begin{cases} x+2, & x<-2\\ -x, & -2 \le x \le 2\\ x^2-6, & x>2 \end{cases}$$

Find the zeros of these functions without using a calculator.

22.
$$f(x) = \frac{x^2 - 3x + 2}{x^2 - 1}$$
 23. $g(x) = 2x^3 - 8x$

Use a calculator for the rest of the assignment. Write answers to three or more decimal place accuracy.

33. Find the zeros of $f(x) = x^3 - 3x^2 - 2x + 4$. 34. Solve $x^3 - 2x^2 + 5 = \sqrt{3x + 10}$.

Find the domain and the range for each function.

35. $y = 2x^2 + 3x + 6$ 36. $y = \frac{|x-2|}{x-2}$ 37. $y = \sqrt{7-x^2}$

LESSON 1-3 INTERCEPTS, SYMMETRY, EVEN/ODD, INTERSECTIONS

<u>x- and y-intercepts</u>

x-intercepts are points where a graph crosses or touches the *x*-axis. The *y*-coordinate is zero. To find the *x*-intercept, let y = 0 and solve for *x*. *y*-intercepts are points where a graph crosses or touches the *y*-axis. The *x*-coordinate is zero. To find the *y*-intercept, let x = 0 and solve for *y*.

Example 1.

Find the *x*- and *y*-intercepts for $y^2 - 3 = x$.

Graphs can be symmetric to other lines and points. However, we will concentrate on these three.

Formal tests for symmetry:

- 1. y-axis: replacing x with -x produces an equivalent equation
- 2. x-axis: replacing y with -y produces an equivalent equation
- 3. origin: replacing x with -x and y with -y produces an equivalent equation

Informal tests for symmetry:

- 1. y-axis: substituting a number and its opposite for x give the same y-value
- 2. x-axis: substituting a number and its opposite for y give the same x-value
- 3. origin: substituting a number and its opposite for x give opposite y-values

Note: These informal tests are not foolproof. Think about whether other numbers would work the same. If your substitution produces zero, try another number.

Examples: Find the type(s) of symmetry for the graph of: 2. $y = 2x^3 - x$ 3. y = |x| - 2 4. |y| = x - 2

Even/Odd Functions

A function is defined to be <u>even</u> if f(-x) = f(x) for all x in the domain of f(x). Even functions have graphs with <u>y-axis symmetry</u>. Examples: $y = x^2$, $y = x^4$, $y = x^2 + 3$, $y = x^4 + x^2$ A function is defined to be <u>odd</u> if f(-x) = -f(x) for all x in the domain of f(x). Odd functions have graphs with <u>origin symmetry</u>. Examples: y = x, $y = x^3$, $y = x^5$, $y = x^5 - x^3$

-

Examples: Determine whether the following functions are even, odd, or neither. 5. $f(x) = x^3 - x$ 6. $g(x) = x^2 - 4$ 7. $h(x) = x^2 + 2x + 2$

Points of Intersection of Two Graphs (without a calculator)

- Method 1. Solve one equation for one variable and substitute into the other equation.
- Method 2. Solve both equations for the same variable and set equal.
- Example 8. Without using a calculator, find all points of intersection for the graphs of x-y=1 and $x^2-y=3$.

ASSIGNMENT 1-3

Find the x- and y-intercepts for these graphs. Write your answers as ordered pairs.

Find the intercepts for the graphs of these equations. Do not use a calculator.

4.
$$y = 3x - 2$$

5. $y = x^2 - 4x + 3$
6. $y = x\sqrt{x^2 - 9}$
7. $y = \frac{x - 2}{x + 3}$
8. $xy^2 + x^2 + 4y - 4 = 0$
9. $y = \sqrt{x^2 - 9}$

Check for *x*-axis, *y*-axis, or origin symmetry. Do not use a calculator.

- 10. the graph of Problem 1 on this assignment.
- 11. the graph of Problem 2 on this assignment.
- 12. the graph of Problem 3 on this assignment.

13.
$$y = x^2 - 2$$

14. $y = x^3 + x$
15. $y = \frac{x}{x^2 + 1}$
16. $y^2 = x - 2$
17. $y = x^3 + 3$

18. Which of the graphs in Problems 1-3 represent(s) an odd function?

19. Which of the graphs in Problems 1-3 represent(s) an even function?

Without using a calculator determine whether the following functions are even, odd, or neither.

20.
$$f(x) = 4 - x^2$$
 21. $g(x) = x(x^2 - 4)$ 22. $h(x) = x^3 - 1$

For Problems 23-25 find intercepts, symmetry, and sketch a graph without using a calculator.

23.
$$y = x + 2$$
 24. $y = \frac{1}{x}$ 25. $y = x^2 + 3$

Find the points of intersection for the graphs of these equations without using a calculator. Show algebra steps!

26.
$$\begin{cases} y = x^{3} \\ y = x \end{cases}$$
 27.
$$\begin{cases} x^{2} + y^{2} = 25 \\ y - x = 1 \end{cases}$$

28. Is the point (1,4) on the graph of 2x - 3y = 10?

~

29. If (2,-1) is a point on the graph of $y = kx^3$, find the value of k.

Use a calculator to determine whether the following functions are even, odd, or neither.

30.
$$f(x) = \sqrt{x^2 - x^4}$$

31. $g(x) = |x^3 - x|$
32. $h(x) = \sin x^3$
33. $j(x) = \log x^3$

For Problems 34-36 (using a calculator):

- a. list the intercepts
- b. identify the symmetry
- c. draw a window rectangle and sketch the graph

34. $y = -2x^2 + 2x + 1$ 35. $3x^2 + y^2 = 4$ 36. $x + y^2 = 4$

Use a calculator on Problems 37-40. Answers should be accurate to three or more decimal places.

- 37. If $y = x^3 + 4x^2 5x$, find the value(s) of x when y = 20. Write the equation you are solving on your paper.
- 38. Solve |3x-7| < 9.
- 39. Draw a window rectangle and sketch a graph of $y = (x-5)^{\frac{2}{3}}$.
- 40. Draw more than one window rectangle to show all local maximum and minimum points and end behavior of $f(x) = \frac{1}{4}x^4 \frac{19}{6}x^3 \frac{11}{4}x^2 + 5x$.

Find the slope for each of the following.

- 41. a line through (2,3) and (2,7)
- 42. the graph of 2x + 3y = 8
- 43. a line perpendicular to x = 4

Find an equation for each of the following.

44. a line through (0,2) with slope $m = -\frac{2}{3}$

45. a line through (1,2) perpendicular to the graph of $y = \frac{2}{3}x$

LESSON 1-4 LIMITS, CONTINUITY

Limits

Informally, a <u>limit is a *y*-value</u> which a function approaches as *x* approaches some value. $\lim_{x \to 0} f(x) = L$ means as *x* approaches *c*, f(x) approaches the *y*-value of *L*.

- 6. $\lim_{x \to 5^{-}} f(x) =$
- $7. \lim_{x \to 5^+} f(x) =$

Continuity

Informally, a function is <u>continuous</u> where it can be drawn without lifting a pencil. Roughly, continuous means "connected."

Formally, a function is <u>continuous</u> where its limit and function value are the same. In this course, we will work with three types of <u>discontinuities</u>: <u>holes</u>, <u>vertical</u> <u>asymptotes</u>, <u>and jumps (breaks)</u>.

Example 13. List the x-values of the discontinuities of the function y = f(x) graphed above.

All discontinuities can be classified as <u>removable</u> or <u>nonremovable</u>. <u>Removable discontinuities</u> occur when the function has a limit (holes in the graph). <u>Nonremovable discontinuities</u> occur when the limit of the function does not exist (jumps and vertical asymptotes).

Example 14. Which of the discontinuities from Example 13 are removable?

At x-values where a function is continuous, limits can be found by direct substitution.

Examples:

15.
$$\lim_{x \to 3} (3x^2 + 2) =$$
 16. $\lim_{x \to 1} \frac{x^2 + x}{x + 1} =$

For **<u>piecewise functions</u>**, one-sided limit evaluation is often necessary.

Examples:

17. If
$$f(x) = \begin{cases} 4-x, & x \le 1\\ 4x-x^2, & x > 1 \end{cases}$$
, $\lim_{x \to 1} f(x) = \\ 18. \text{ If } g(x) = \begin{cases} 3x-x^3, & x \le 1\\ 2x^2-1, & x > 1 \end{cases}$, $\lim_{x \to 1} g(x) = \end{cases}$

19. For this same g function, $\lim_{x \to -1} g(x) =$

Another function requiring one-sided limit analysis is a step function called the <u>Greatest Integer Function</u> also known as the <u>Floor</u> <u>Function</u>. $f(x) = \lfloor x \rfloor$ = the greatest integer less than or equal to x. The graph is shown at the right.

Examples: Find the following limits.

20.
$$\lim_{x \to \frac{1}{2}} \lfloor x \rfloor =$$
 21.
$$\lim_{x \to 1} \lfloor x \rfloor =$$

ASSIGNMENT 1-4

Use the graph of y = f(x) at the right to find these values. 1. $\lim_{x \to 5} f(x)$ 2. $\lim_{x \to -3} f(x)$ 3. $\lim_{x \to -3^-} f(x)$ 4. $\lim_{x \to -3^+} f(x)$ 5. f(-3) 6. $\lim_{x \to 4^-} f(x)$ 7. $\lim_{x \to 0} f(x)$ 8. f(0) 9. $\lim_{x \to 4} f(x)$ 10. $\lim_{x \to 4^+} f(x)$ 11. f(4) 12. f(2)13. $\lim_{x \to 2} f(x)$ 14. f(1) 15. $\lim_{x \to 1} f(x)$

16. List the x-values of all removable discontinuities of f(x).

17. List the x-values of all nonremovable discontinuities of f(x).

Use the graph shown to find each value.

Use the graphs shown to find each value.

23. $\lim_{x \to 2} (x^2 - 4)$ 24. $\lim_{x \to -3} (x^2 - x)$ 25. $\lim_{x \to 0} \sqrt{x^2 + 9}$ 26. $\lim_{x \to 3^-} (2x - 5)$ 27. $\lim_{x \to -1} \frac{x}{x^2 + 1}$ 28. $\lim_{x \to -2} \sqrt[3]{x^2 + 4}$ 29. $\lim_{x \to 0} \frac{x}{x - 1}$ 30. $\lim_{x \to 0} (3x - 3)^3$ Use these piecewise functions to find the following.

31.
$$f(x) =\begin{cases} x^2 - 2, & x \le 0 \\ x + 2, & x > 0 \end{cases}$$

a.
$$\lim_{x \to 0^-} f(x)$$
 b.
$$\lim_{x \to 0^+} f(x)$$
 c.
$$\lim_{x \to 0} f(x)$$

d. Give the intervals where f is continuous.
32.
$$g(x) =\begin{cases} 3x^2 - x, & x \le 2 \\ 2x + 6, & x > 2 \end{cases}$$

a.
$$\lim_{x \to 2} g(x)$$
 b.
$$\lim_{x \to 0} g(x)$$

c. List the interval(s) where g is continuous.

- 33. Find the interval(s) where $y = \sqrt{x-1}$ is continuous.
- 34. Find the discontinuities of $f(x) = \frac{x}{x(x+1)}$ and classify each of them as removable or nonremovable.

If f(x) is a continuous function as shown in the graph, find the value of the unknown a.

- 36. Show algebraic steps (without a calculator) to find the intersection point(s) of the two functions $f(x) = \begin{cases} x^2 + 2, & x \le 1 \\ 3, & x > 1 \end{cases}$ and g(x) = -x + 8.
- 37. Verify your intersection point(s) from Problem 36 without using a calculator by graphing f(x) and g(x) on the same axes.

Use graphing adjustments to draw an accurate graph of each of the following without using a calculator. If necessary, use the parent graphs shown on Page 6.

- 38. y = |x+2|40. $y = \frac{1}{x-1}$ 41. $y = \sqrt{|x|}$ 42. $y = 2\sqrt[3]{x}$ 43. $y = -\frac{1}{x^2}$ 44. $y = \frac{1}{(-x)^2}$ 45. $y = (x+3)^3 - 2$
- 46. Write an equation for the curve shown.
- 47. Check your answer by graphing with a calculator.

UNIT 1 SUMMARY

Slope:
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Equations for lines:

<u>Point-Slope form</u> $y - y_1 = m(x - x_1)$ <u>Slope-Intercept form</u> y = mx + b (where *b* is the *y*-intercept)

Domain: all possible *x*-values **Range**: all possible *y*-values

Inverse functions: found by switching x and y and solving for the new y.

Parent graphs and graphing adjustments: see Page 6 Intercepts:

To find the *x*-intercept, let y = 0 and solve for *x*. To find the *y*-intercept, let x = 0 and solve for *y*.

Symmetry:

Informal tests:

- 1. y-axis: substituting a number and its opposite for x give the same y-value.
- 2. *x*-axis: substituting a number and its opposite for y give the same *x*-value.
- 3. origin: substituting a number and its opposite for x give opposite y-values.

Even/odd functions:

Even functions have graphs with <u>*y*-axis symmetry</u>. Odd functions have graphs with <u>origin symmetry</u>.

Limits:

A limit is a *y*-value. Analyze left and/or right behavior. Use direct substitution.

Discontinuities: holes, vertical asymptotes, and jumps (breaks). Removable (holes). Nonremovable (jumps and vertical asymptotes).

ASSIGNMENT 1-5 REVIEW

Draw accurate graphs for the following without using a calculator. Use the parent graphs on Page 6 to help you whenever possible.

1.
$$4x + 2y = 6$$

2. $y = \frac{-x+4}{2}$
3. $y = \frac{1}{x} + 1$
4. $y = \sqrt[3]{x-2}$
5. $y = |x^2 - 2|$
6. $y = x^{\frac{2}{3}} - 1$
7. $y - x^2 = 0$
8. $x = y^2$
9. $y = x^3 - 1$

10. For which of the relations in Problems 1-9 is y not a function of x?

- 11. Find equations for lines passing through (-1,3) with the following characteristics.
 - a. $m = \frac{2}{3}$ b. parallel to 2x + 4y = 7c. passing through the origin d. perpendicular to the x-axis

Without using a calculator, find the point(s) of intersection of the graphs of the following. Show algebra steps!

12.
$$\begin{cases} y = x + 5 \\ y = -2x + 8 \end{cases}$$
 13.
$$\begin{cases} x^2 - y^2 = 9 \\ x^2 + y^2 = 9 \end{cases}$$

14. If $f(x) = 1 - x^2$ and g(x) = 2x + 1, find the following.

a.
$$f(x)+g(x)$$
 b. $f(g(x))$ c. $(g \circ f)(2)$

Find the zeros without using a calculator.

15.
$$f(x) = x^4 - 7x^2 + 12$$

16. $g(x) = \begin{cases} 2x - 1, & x < 0 \\ x^2 - 4, & x \ge 0 \end{cases}$

17. Find the inverse function for $f(x) = (x^3 - 1)^5$.

For each function in Problems 18-20, without using a calculator:

- a. find the domain and the range.
- b. find the intercepts.
- c. discuss the symmetry.
- d. tell whether the function is even, odd, or neither.
- e. draw an accurate graph.

18.
$$y = |x^2 - 4|$$
 19. $y = -\sqrt{x+4}$ 20. $y = |x^3| - 2$

Use the graph of y = f(x) at the right to

draw an accurate graph for each of the following.

21. $y = \frac{1}{2} |f(x)|$ 22. y = |f(2x)|23. y = f(x-2)-2

Use a calculator for Problems 24-29. Remember to show three or more decimal place accuracy for all answers that are not exact.

For Problems 24-26 :

- a. find the domain and the range. b. find the intercepts.
- c. discuss the symmetry. d. tell whether the function is even, odd, or neither.
- e. draw an accurate graph.

24.
$$y = \frac{x}{x^2 - 4}$$
 25. $y = -\sqrt{5 - 2x^2}$ 26. $y = 3x^2 - 3x - 5$

- 27. Solve $3x^3 3x + 1 \le 0$.
- 28. Solve |3x+5| > 2.
- 29. Find the x-value(s) of the point(s) of intersection for the graphs of $x - y^2 = -7$ and 2x - 3y + 12 = 0. Write the equation you are solving.

Are the following functions even, odd, or neither?

30. $g(x) = \frac{x}{|x^3 - x|}$ 31. $h(x) = \frac{x - 1}{|x^3 - x|}$

Find the following limits without using a calculator.

32.
$$\lim_{x \to -2} (3x-3)$$
 33. $\lim_{x \to 2^-} \left\lfloor \frac{x}{2} - 4 \right\rfloor$ 34. $\lim_{x \to 2} \left\lfloor \frac{x}{2} - 4 \right\rfloor$ 35. $\lim_{x \to 3^+} \left\lfloor \frac{x}{2} - 4 \right\rfloor$

Use the graph of y = f(x) for Problems 36-42. Find the following limits and function values. $38. \lim_{x \to 2^-} f(x)$

- 36. $\lim_{x \to 2} f(x)$ 37. f(2)39. $\lim_{x \to 1} f(x)$ 40. $\lim_{x \to 0} f(x)$
- 41. List all removable discontinuities of f(x).
- 42. List all nonremovable discontinuities of f(x).

Use the function
$$g(x) = \begin{cases} x-1, & x \le 0 \\ x^2 - 1, & 0 < x < 2 \\ 4, & x \ge 2 \end{cases}$$
 for Problems 43-48.

43. Sketch a graph of g(x).

Find the following limits.

45. $\lim_{x \to 2} g(x)$ 46. $\lim_{x \to 2^-} g(x)$ 47. $\lim_{x \to 1} g(x)$ 44. $\lim_{x \to 0} g(x)$ 48. List all discontinuities of g(x).